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1. INTRODUCTION

The goal of this research project is to investigate the mechanisms for automated handling

and assembling of non-rigid objects. This is to be accomplished by approaching four aspects
of the problem:

a. Study the deformation characteristics of non-rigid materials.
b. Investigate optimal tool structure for handling non-rigid objects.

0c. Develop the sensing mechanism to locate non-rigid objects.
0 d. Develop the motion control mechanism for the host machines.

This semiannual report summarizes the results of the research achieved during the period
January 15, 1990 through July 15, 1990. In this period, two topics have been studied. The
first topic addresses the strategies of automated assembling of non-deformation objects. The

0 study takes a typical assembly task, inserting a flexible beam into a rigid hole, as the target of

study. Assembly mechanism have been developed for both loose clearance and tight clearance
cases. In the loose clearance case, it is found that the deformed beam curve is the best tool
trajectory for assembly. In the tight clearance case, however, the tool trajectory needs to be
modified in order to eliminate the effect of the resistance force. The involute of the beam curve

is found to be the optimal trajectory of modification.
The second topic is the identification of deformation characteristics and estimation of object

deformation by using vision sensors. To automatically handle and assemble deformable
0 objects, a key point is to understand the deformation behavior of the objects. Mathematical

descriptions of the object deformation has been found very complicated. In addition,
deformation characteristics of the objects in many cases are unknown. This makes impossible
even to have a mathematical description. The goal of this study is to find the deformation

S characteristics by using a vision sensor. Once the deformation characteristics is defined the

deformation behavior can further be studied by mathematical analysis, or alternatively by using
vision system again to measure the deflection of the object.

The study in this period has been concentrated on one-dimensional objects. In the next
0 period, we plan to continue the research on one-dimensional objects and to extend the research
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to two-dimensional objects including the sensor identification of the deformation behavior, and
optimal tool structure and assembly mechanisms for handling both types of objects.

The rest of this report presents the results of the two research topics as just summarized as
well as the research plan for the next period.

2. AUTOMATIC ASSEMBLY OF ONE-DIMENSIONAL OBJECTS

Deformable objects may be one, two or three-dimensional. Our investigation starts from
one-dimensional objects since the latter is the most fundamental among the three, and the
results can be further extended to two and three-dimensional objects. To study the mechanism
of automatic assembly of one-dimensional objects, we also take a typical assembly task,
inserting a deformable peg (flexible beam) into a rigid hole as the target of study (Fig. 1). The
peg insertion task has been studied by Whitney and Simunovic of Charles Stark Draper
Laboratory and other scientists (see Appendix A). Many fundamental issues of assembly are
included in the peg insertion tasks. It is considered that if the mechanisms can be successfully
developed for the peg-insertion task, mechanisms for other assembly tasks can be likewise

developed.
In investigating the beam insertion mechanism, we first study the behavior of beam

deformation. From earlier studies, it is known that the position and orientation of the peg end-
must precisely match the hole. For deformable objects, the position and orientation of the tool
is not the same as that of the free end which goes into the hole. As a result, we must first
investigate the deformation behavior of a flexible beam such that the tool trajectory can be
found based on the required position and orientation of the beam end. We use Rhode's method
to describe the beam deformation. In this method, the deformation is described by the
Mclaurin's series since there does not exist a closed-form solution for the deformation (for the
series description, see next section of this report).

In developing the assembly mechanism, we first reviewed the conditions of assembly for
rigid objects. It is found that the conditions proposed for rigid parts by Whitney are also
applicable to flexible beams. Since the latter are flexible as a whole, but their surfaces that

2



0h

0

Tool Hol

y x

0

* Fig. 1 A deflected beam is to be inserted into a hole



make contact with the inner-surface of the hole are still rigid. As a result, the geometric and
force conditions for successful assembly of rigid objects are still valid for deformable beams.

Base on the deformation behavior of the beams and the assembly conditions, we have

developed assembly mechanisms for both loose and tight clearance assembly. Loose clearance

means that the difference between the radius of the beam and that of the hole is relatively large;

therefore, the beam does not experience large resistance when it is inserted into the hole. Tight

clearance indicates that the difference is very small, and the beam encounters large resistance

force when it is inserted.
For the loose clearance case, it is found that the best trajectory of assembly for the tool is

the curve formed by contour of the deformed beam. When the tool follows the contour of the

deformed beam, the beam is naturally deflected by its own weight, and no force is interacted
between the beam and the hole. Consequently, one of the assembly conditions, minimizing the

interaction force between the hole and the beam, is best satisfied, and assembly is more likely

to be successful. For tight clearanc- case, if the tool trajectory is still the same as in the loose

clearance case, the interaction force between the hole and the beam must be increased to

counterbalance the resistance force. This violates the assembly conditions. We propose to

modify the tool trajectory following the involute of the naturally-deflected beam curve. The

total deflection of the beam is reduced to reflect the effect of the resistance force. Thus, the

reaction force between the hole and the beam is minimized again.

The assembly mechanisms proposed for both the loose and tight clearance cases are

verified by experiments in our laboratory. In both experiments, successful results have been

achieved.

A technical paper has been written based on the results just described. The details of the

* assembly mechanisms can be found in the paper which is attached to this document as

Appendix A, "Strategies for Automatic Assembly of Deformable Objects."

3. VISION IDENTIFICATION OF DEFORMATION BEHAVIOR OF ONE-

DIMENSIONAL OBJECTS

For one-dimensional objects, deflection can be described by the following equation
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1 dO
EL = El S_ = M(s). (1)

where p is the radius of curvature, E is the stiffness of the material, I is the moment of inertia

of the cross-sectional area, s is the length of the beam, 0 is the tangential angle at point s which

is called deflection angle in our research, and M(s) is the deflection moment exerting at point s.

* Since M(s) is a nonlinear function of s, (1) is difficult to solve. Take the derivative of (1) with

respect to s, one obtains the following equation

• ds2 = Y s cosO (2)

where o is the weight density of the beam. From (2), it can be seen that the deformation

behavior is determined by the term j. We therefore call it the deformation characterisftic. For

* a one-dimensional object, it is difficult to identify its deformable characteristic by using its
fundamental parameters, since w, E and I are not feasible to obtain in reality. We propose to

use vision sensors for the identification purpose. The procedures for small deflection can be

briefly described as follows.

* Using Maclaurin's series method, the solution of (2) can be expressed as

0(s) = 0(0) + 0'(O)s + I 0"(0)s2 . (3)

* By using the boundary conditions of the b-am, (3) can be expressed as

61 = 0 - cos()__ C 3 40cos 3(6O)(-) 3 s9

6= -co () s -~- 0sin(6O) cos(OO) - 8640 El

1 sin2(0)cos(0)(W)3s9+ (4)
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where 00 is the deflection angle of the beam end and 0i is the angle of the gripper which holds

the other end of the beam. 01 is known from the gripper orientation, and 00 is measured from
IM

the vision sensor. Once the two angles are known, E can be precisely solved from (4).

SAfter the deformation characteristic is defined, the deformation behavior of a deformable

object can be calculated. Basically, during the assembly process, the required orientation and

position of the beam end is given. The problem is to find what should be the orientation and

position of the gripper which holds the other end of the beam (Fig. 1). We using a numerical
* method with the assistance of the vision sensor. First the length of the beam curve I is

divided equally into n small segments, each with a length h. Then, by using the Lagrangian

interpolation formula, equation (2) can be expressed as

S0i+2 -2 0i+1 +0i = h2(O)Si+l cos (0i), (5)

where 0i denote 0(si) and si = ih for i = 0, 1, 2, ....n. To start the computation of (5), one

needs 00 and 01. 00 is measured by using the vision sensor, 01, however, can be obtained

• from the Lagrangian quadratic interpolation of 0'(so) which is

0'(so) = (2h)-1 (-02 +40 1-30 0 ). (6)

9 Since 0'(so) = 0'(0) = 0 and 0(so) = 00, it turns out that

01 =102+3 (7)

* Substitute O1 in (5) by (7), one obtains

02= 00 -2h 3  C 102+ 0). (8)

cos( 023+00)
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02 can be easily solved from (8). After 02 is known, 01 can be calculated by (7). Iteration can

thus be started. After all the Oi's are obtained, the positions of the each knot point (xi, yi) can

be calculated as

xi =X h cos(0i), and yi = " h sin(Oi). (9)
i i

The attached paper Appendix B, "Deformation Identification and Estimation of One-

* Dimensional Objects by Vision Sensors," further presents the details of the method just

described.

0 3. RESEARCH PLAN FOR THE NEXT SEMIANNUAL PERIOD

In the next period, we plan to continue our research on one-dimensional objects, and at the

same time start to study the automated handling and assembling of two dimensional objects.

* For one-dimensional objects, we will investigate optimal tool structures which are the best in

handling objects with large deformations, and in mating flexible peg and hole with large

resistance forces. At this point, we consider to use multiple end-effectors to handle flexible

objects. For this, coordination between multiple end-effectors will be investigated.

* For two-dimensional objects, we will first study the deformation characteristics. Then the

identification of the deformation behavior by using vision sensors will be investigated again.

Based on the identified deformation, mechanism including the tool structure for handling the

objects and the motion trajectories of the tool will be studied.
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APPENDIX A

STRATEGIES FOR AUTOMATIC ASSEMBLY OF DEFORMABLE OBJECTS

Yuan F. Zheng, Run Pei and Chichyang Chen

Dept. of Electrical Engineering

The Ohio State University

Columbus, OH 43210

ABSTRACT

Strategies for automatic assembly of deformable objects are presented in this

paper. A flexible beam mating with a rigid hole is taken as the target of

investigation. First, the deflection behavior of a deformable beam is studied. Then

the geometric and force conditions for successfully assembly of rigid parts are
reviewed. Based on these conditions of assembly, strategies for assembling

deformable beams are proposed. The strategies are defined by the motion trajectory

of the tool which handles the beam. It is found that when the clearance between the

beam and the hole is loose, the desired trajectory should be the same as the curve

formed by the deformed beam. When the clearance is tight, position and orientation

of the tool should be adjusted, following the involute of the deformed beam curve.

Experimental results are finally given to prove that the proposed strategies are

effective.

ACKNOWLEDGEMENT: This work is supported by the Office of Naval

Research under grant N0014-90-J-1516. Part of Yuan Zheng's work is also

supported by the Presidential Young Investigator Award from the National Science

Foundation (grant DDM-8996238).
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1. INTRODUCTION

Automated handling and assembling of materials have been studied by many

experts in the areas of manufacturing, robotics, and artificial intelligence. Until

now, most studies have assumed that the objects to be manipulated are rigid; but,

in reality, there is a frequency occurrence of non-rigid objects. For example, in the

* shipbuilding, aerospace and automobile industries, flexible plates are widely used

for assembling various vehicles. In the electronics industry, a single printed-

wiring-board (PWB) consists of up to 24 flexible inner layers printed with delicate

wires. In fact, even rigid objects tend to become deformable when the object's

* dimension become extensive.

The automated handling and assembling of non-rigid objects is hindered by

their essential characteristics including: low elasticity, large deformation caused by

external forces and momentums, complicated dynamic behavior, and large physical

* dimension. As a result, automated handling and assembling of non-rigid objects

have never been seriously addressed. In most cases, non-rigid materials and parts

are still handled and assembled by human hands. For example, the inner layers

contained in a PWB are assembled together by human hands, where layer upon

* layer of flexible pieces are added to a base plate until a "book" is assembled. The

book is then laminated to form a PWB. The assembly of PWBs by human beings

not only is inefficient but also results in many errors because the printed inner

layers need to be precisely aligned; and the ability of humans to achieve this level

• of precision varies from operator to operator [1].

Since the handling and assembling of non-rigid objects is involved in a wide

range of manufacturing applications, the automated handling and assembling of

such objects become critically important to improve manufacturing efficiency and

* product quality. Unfortunately, in reviewing the available literature, we only found

a few works which studied the automation of handling non-rigid objects; and in

many cases, only ad hoc methods were proposed. For example, in Europe, Petry
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and Bick designed a cell for the automated insertion of insulating mats into the

interior of automobiles [2]. The insulating mats were flat and soft; and,

traditionally they had been inserted by humans. Petry and Bick designed special

tools to pick up the mats and used robots to insert them into automobiles. Although

the designed cell was reported successful, the proposed methods were limited to a

special application. Ceneral knowledge of handling non-rigid objects was not

presented.

Another issue related to automated handling of non-rigid objects is the recent

research on flexible manipulators. Compared with rigid arms, flexible manipulators
are light weight and hence easily maneuverable. However, because of the arm

deformation and vibration induced by the joint motion, modeling and control of

flexible arms is considered difficult. Nevertheless, a considerable amount of work

has been published on the subject such as references [3-5]. Unfortunately, all those

studies only consider how to control the flexible machines, not the flexible objects.

The latter does not have actuators, and is not feasible to install any sensor on.

Consequently, the methods developed for controlling flexible manipulators are not

applicable to flexible objects.

In general, deformable objects may be one-dimensional such as a flexible beam,

two-dimensional such as a flexible plate, or three-dimensional such as a deformable

body. The study of this paper will concentrate on one-dimensional objects, since

the latter are the most fundamental among the three. The results, however, can be

extended to two and three-dimensional objects. Also, the typical assembly task,

inserting a deformable peg (beam) into a rigid hole, is taken as the target of study-

The peg insertion task for rigid objects has been extensively studied by other

scientists ([6, 7]). It is considered that if good mechanisms can be found for the

peg insertion task, methods for assembling of other type objects can be accordingly

derived.

The structure of the paper is as follows. In the next section, we first study the

behavior of beam deformation. The purpose is to identify the deformed shape of

flexible beams. It is known that an assembly may fail if the position and

10



orientation of the peg end do not match the same of the hole [6]. For deformable

object, the trajectory of the tool which handles the beam is no longer the same as the

free end of the beam, but must comply with the deflected shape. An adequate

trajectory can be found only when the deformed shape is identified.

In the third section, the conditions for a successful assembly of rigid parts as

presented in [6] and [7] will be reviewed. Although deformable beams are not rigid

as a whole, the surface of the object which makes the contact with the hole are still

rigid; therefore, the same conditions should be applicable to deformable beams.

In the fourth section, assembly mechanisms for the loose clearance is first

investigated. The mechanism is defined by the required trajectory of the tool. Two

criteria are chosen to select the trajectory. The first criterion is that the selected

* trajectory should guarantee a successful insertion of the beam following the

conditions of assembly as presented in the previous section. The second criterion is

that the selected trajectory should result in a minimum motion of the tool such that

the assembly consumes the minimum energy. Based on the two criteria, the best

* trajectory is found to be the curve formed by the deflected beam.

In the fifth section, study is concentrated on the tight clearance case. When the

clearance between the beam and the hole is tight, the beam experiences large

resistance force during the insertion. In order to overcome the resistance force, the

tool trajectory must be modified. It is found that the involute of the beam curve is

an effective trajectory of modification.
In the sixth section, experiments of beam assembly for both loose and tight

clearance cases are presented. The experimental results prove that the mechanism

* proposed in this paper are effective for assembling of deformed objects. Finally,

conclusions are presented in the seventh section.

11
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2. DESCRIPTION OF BEAM DEFLECION

Consider that a beam-structured object is grasped by the tool of an automated
machine (robot end-effector, for example). Since the object is non-rigid, the beam

is deflected under the influence of its own weight (Fig. 1). The position and

orientation of the beam's free-end is no longer a simple transformation from the

other end held by the tool. To understand the relation between the two ends, the

deflection behavior of the beam must be known.
From classical mechanics, it is well known that the deflection of a beam can be

described by the following equation ([8]):

EI1 dO
EI-EIL= M(s) (1)

P

where p is the radius of curvature, E the stiffness of the material, I the moment of

inertia of the cross-sectional area, s the length of the beam from the origin, and
M(s) the deflecting moment exerting at point s of the beam. Since M(s) in (1) has a

non-linear relation with s, solving (1) is not an easy issue. Classical mechanics and
applied mathematics have provided many solutions. Here, we use Rhode's method

as presented in [9].
For convenience, we assume the origin of the beam to be at the free-end of the

beam. Equation (1) can be turned into:

El 62 (2)
ds2  -Cos cos 0

where 0o is weight density of the beam. Assume that the deflection angle at the free-

end of the beam is given as 00. The boundary conditions of (2) are 0(0) = 00, and
d0(O)/ds = 0 (no deflecting moment exerts at the free-end). There does not exist a

closed form solution to (2). Instead, the solution is expressed in terms of a series:

12



00

0= Xansn . (3)
n=o

From (3), one may get

dO Os n, lnansn- 1(4
n= 1

and
d20

ds2 =n(n-1)ansn 2 (5)

By using the boundary conditions and expanding both sides of (2), one may get ([9]):

ao = 0(0) = 0o,

d0(0)
al = ds = 0,

d2()(Q) 1
a2 = 2!ds2 =-fO).scos(s)1s= O=O

d3)( ) ( (0
a3 = 3!ds3 

- - [cos 0(s) -s sin 0(s) 0'(s)] Is=O = - cos 00,

a3CD
a6 = 3 OEI sin Oo, and a3n+4 = a3n+5 = 0, n = 0, 1, 2 .... etc.

As a result, the deflection angle can be expressed as:

O(s) = 00 + 7 a3k s3k . (6)
k=1

By using (6), one may also find the deflected position of point s in the (x,y)
coordinates. Since dy/ds = sin 0, one has

13



s

y(s) =j sin0(t)dt = AI(s)sin0o + A2(s)cos0O (7)

* where Al(s) = s - (a3) 2 s7/14 - a3a6sl 0 /10 ..... , and A2 (s) = a3s 4/4 + a6s7/7 +

[a9-(a 3)3/6]s 10/10 + ...... Likewise, one may have

x(s) = Al(s)cos0O - A2(s)sin0o. (8)

Equations (6), (7) and (8) give a general description of the beam deflection. If the
deflection is small, (6), (7) and (8) can be simplified by using their first

approximation [9], i.e.:

0(s) = 00 + a3s 3, (9)

y(s) = s sin0o + a3 s4 cos00/4 (10)
and

x(s) = s cos0O - a3 s4 sin00/4. (11)

If the deflection is small, and the deflection angle at the free-end is expressed as:

€oL 3

00= 6E (12)

one may have the maximum deflection of y at y = L being

y(L) = s sin0o + a3s 4cosO0/4 = L4 3)8EI (3

The results of (12) and (13) are in agreement with small deflection theory of many
textbooks dealing with material mechanics ([8], [10]).

14



From the above discussion, it can be seen that the deflection behavior and the

mathematical descriptions of the behavior are very complicated unless the deflection
is small. In the rest of this paper, however, our assembly mechanism is based on a
known deflection. The deflection beha ior can be obtained by a numerical
computation based on (9), (10) and (11) if the deflection is small. Or (6), (7) and
(8) when the deflection is large. Even when (6), (7) and (8) are used, solutions are
still approximate since it is impossible to compute all the terms in the series.
However, more precise solutions can be obtained by including more terms in the
computation. On the other hand, if parameters E, I or (o are not given, one will not

be able to use those formulations. Instead, the deflection can only be measured in
reality. Vision is probably the best mechanism to use for this purpose. Using a
vision system to measure the deflection of a beam has also been studied. The result
is reported in another paper ([10]) and will not be discussed here.

3. CONDITIONS FOR SUCCESSFUL ASSEMBLY

Assembly of rigid parts was previously studied by many works such as [6],[7]
and [12]. It was pointed in [6] and [7] that for rigid parts, assembly is a geometric
problem. In order to successfully complete the assembly, theoretical and
experimental studies have revealed certain conditions that must be met while

positioning the parts and applying insertion force on the parts. For the peg
insertion task, Whitney summarized the following three conditions [7].

(1) The peg must first cross the chamfer such that the insertion to the hole could
0 start. For this, the following condition must be met:

leoI < w (14)

where eo is the initial position error of the peg and w is the width of the chamfer as

shown in Fig. 2a.

15



(2) One reason for the failure of the peg-insertion is vedging. Wedging makes

the peg got stuck in the hole. The cause of wedging is geometric rather than applied

forces [6]. To avoid wedging, the insertion angle q must meet the following

condition when two-point contact occurs (Fig. 2b):

I q I < c/g (15)

where c = (R-r)/R called clearance ratio, and g is the coefficient of friction; R and r

are the radius of the hole and the peg respectively.

(3) Another reason for the failure of the peg-insertion is jamming. Jamming is a

condition that the applied forces and moments applied to the peg are in a wrong

proportion. To avoid jamming, the following inequalities must be satisfied:

I M/rFx + g(l+X)Fy/Fx I < X (16)

and

I Fy/Fx I < 1/g (17)

where X= 1/2rli with 1 being the length of the part which has been inserted in the

hole, and M, Fx and Fy are the applied moment and forces as shown in Fig. 2b.

Note that here Fx is aligned with the axis of the peg and Fy is perpendicular to the

axis.

The above three conditions reveal that in order to successfully complete the

insertion task, first, the tip of the peg must be precisely positioned to the hole (at

least cross the chamfer) before the insertion starts. Secondly, the direction of the

insertion should be closely aligned with the axis of the hole, i.e., the insertion angle

should be very small. Finally, the applied force in the insertion direction Fx should

be large, but the one in the lateral direction Fy and the applied moment M should be

as small as possible.

We consider that the same conditions are still applicable to the assembly of

deformable beams. Although the beam is not rigid as a whole, deformation occurs

only along the main axis of the beam. The surface of the beam which contacts with

16
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the hole is still rigid. Consequently, the geometric and force relations between the
surface of the beam and hole must still satisfy the above three conditions.
However, the interactions between the beam and the hole are controlled by the tool

* which holds the other end of the deflected beam. Then the question becomes what

should be the behavior of the tool such that the geometric and force relations satisfy
the above three conditions?

It could be noticed that two issues are involved in the mating of rigid parts. One

* is the position and orientation of the tool and the other is the force and moment
applied by the tool. For deformable beams, however, only the position ard
orientation of the tool need to be considered. This is because the beam is
deformable, and the end of the beam which is held by the tool still has three degrees

* of freedom even when a portion of the beam is inside the hole. That is, no position
constraints are imposed on the tool. As a result, the tool is not able to control the
force and moment in the direction which the tool has no motion freedom. Thus,

one is not able to directly control the interaction forces between the beam and the
* hole. Instead, the latter can only be controlled by properly positioning the tool.

4. ASSEMBLY MECHANISM FOR LOOSE CLEARANCE

• In this section, we study the tool trajectory for the loose clearance case, i.e.,
the difference between the radius of the beam and the hole is relatively large, and
the resistance that the hole imposes on the beam is small. In the next section, we

will further consider the tight clearance assembly. Note that in this paper, the hole
* is assumed to be rigid and straight.

Consider a deformable beam with a length of L that needs to be inserted into a
hole whose axis has an angle of 00 with the x axis of the world coordinates (Fig.

1). For convenience, we attach a coordinate frame (xh, Yh) to the hole, with the xh

• axis aligned with the axis of the hole and the original point at the entrance of the
hole (Fig. 1). To find an optimal trajectory, we divide the assembly procedure into

three phases, approaching phase, initial insertion phase and insertion phase. For

17



each phase, the details need to be further discussed. The following definitions,

however, are for convenience in our discussion.

Definition 1 Any point of the beam which coincides with the original point of the

(xh, Yh) coordinates during the assembly process is called the end of the beam

(note that the terminal point of the beam which goes into the hole is called the free-

end of the beam).

Definition 2 The tangent vector at the end of the beam is called the end tangent

vector. The one at the free-end is called the free-end tangent vector.

Definition 3 The curve that describes the shape of a deformed beam which is

outside the hole is called the beam curve.

A. Approaching Phase

In this phase, the tool brings the beam to approach and finally make a contact to

the hole. To successfully complete the assembly, the free-end of beam must be

precisely positioned and orientated before the insertion starts such that the first two

conditions as summarized in the previous section are satisfied. It is clear that when

the contact is made, the position of the free-end should be at the original point of the

(xh, Yh) coordinates and the orientation should be aligned with the Xh axis. The

position and orientation of the tool, however, should not be the same as the free-

end of the beam, but must be specified according to the deflection of the beam.

From our earlier discussion, it can be seen that the position and the orientation of

the tool in the (xh, Yh) coordinates should be:

18



Px -AI(L)

py A2(L) (18)
00

*. a3kL 3k

k=1

for large deflections, and

Px -L
COL 4  

(9PY - 8E (19)

cOL 3* 9
6EI

for small deflections. Note that (18) and (19) represent a rotational transformation

of (6)-(11) from the (x, y) coordinates to the (xh, Yh) coordinates. Once the tool
• moves to the point as specified by (18) or (19), the free-end of the beam makes a

contact to the hole. Next, the initial insertion process can start.

B. Initial Insertion Phase

The purpose of this phase is to insert a small portion of the beam into the hole
such that the hole can start to apply forces to the beam or vice versa. The length of

this small portion depends on the total length and the weight of the beam and should

be selected in reality. In general, it should be long enough such that the beam can
apply the force to the hole without loosing the contact. On the other hand, it should
not be too long such that the deflection of the beam caused by its own weight is
distorted. The reason for the later limitation will be made clear as our study

• proceeds.

Assume the length of the small portion is AL. To insert the portion into the

hole, the tool should be moved to the following point
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* x -AI(L) + AL

Py A2 (L) (20)
00

0 1 a3kL 3k

k=1

for large deflections, and

lx -L+ Al
COL4 (1

PY = 8E(21)

COL 3

for small deflections. This completes the initial insertion phase.

C. Insertion Phase

From the description of the initial insertion phase, it is clear that as a small

portion is inserted into the hole, the end tangent vector is no longer aligned with the

Xh axis. The discrepancy becomes bigger as the tool moves further. As a result,

the second condition as specified in the previous section will be violated. Then the

* question is: how can we maintain the orientation of the end tangent vector always

aligned with the axis of the hole, and at the same time the reaction force between the

hole and the beam is minimum ? Before answering this question, we need to make

following proposition.

Proposition 1 The minimum force that the hole exerts on the beam is the force

that counterbalances the weight of the portion which is inside the hole.
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Proof: It is mentioned earlier that the hole is straight; therefore, the portion of the

beam that is inside the hole has no deflection. Recall that the deflection is caused by

the weight of the beam. Since the beam has no deflection inside the hole, the

deflection effect of the weight must be counterbalanced by the force exerted on the

beam by the hole.

It was mentioned in the previous section that in order to have a smooth

assembly, the force that the hole exerts on the beam in the Yh direction should be as

0 small as possible. From the proposition just proved, it is known that the minimum

force should at least counterbalance the weight of the portion which is inside the

hole. It follows that if we can maintain the minimum force as the beam is inserted

into the hole, the assembly is in its best condition.

* Since the resistance force is very small, and the reaction force from the hole

only counterbalances the weight of portion which is inside the hole, the force

exerted on the outside portion is negligible. As a result, the portion outside the hole

can be considered as free beam with its free-end being at the original point of the

* (xh, yh) coordinates. Consequently, to maintain a minimum reaction force between

the beam and the hole, the tool should follow such a trajectory that the outside

portion of the beam always behaves as a free beam (virtual free beam), and its end

tangent vector is always aligned with the x axis of the hole. This kind of motion

0 continues until the beam is completely inserted into the hole. Any other trajectory

will result in a large reaction force, and the assembly is more likely to fail.

It appears that we have to continuously find the beam deflections as the beam

length changes. This is apparently not feasible in practical applications. After a

* careful study of the deflection behavior, however, we find that the desired tool

trajectory follows a well defined pattern.

Claim 1 The desired trajectory of the tool for an optimal hole insertion should

follow the beam curve which appears at the end of the approaching phase.

Proof: At the end of the approaching phase, the beam is completely outside the

hole. From equation (1), it is known that the curvature of any point on the beam is
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determined by the weight of its right-side portion of the beam (the portion with the

free-end) and has nothing to do with the left portion of the beam. As a result, the

beam curve of a beam with a length of s (Fig. 3a) is the same as the portion of a
*longer beam if the portion has the same length of s from the end (Fig. 3b). Thus,

the shape of the beam curve when the beam first contacts the hole defines the beam

curves of all the virtual free beams before the beam is completely inserted into the

hole. It follows that the trajectory of the tool is the same as the beam curve when

* the approaching phase is just completed. *

By using the claim just proved, it is easy to specify the trajectory of the tool.

Actually, once the deflection of the beam is found by using (6), (7) and (8), or by

(9), (10) and (11), the assembly trajectory of the tool is simultaneously defined.

Assume that the insertion speed is determined to be ds/dt = V. One can drive the

required motion speed of the tool from the (6), (7) and (8) as:

4X dA2(s) V,(2
* dt ds (2

dx dA(s) V (23)
dt ds

and

= V a3ks3k (24)
k=1

* Again, the tool velocities expressed in (22), (23) and (24) are expressed in the (xh,

yh) coordinates. Also in reality, only a few terms in (22)-(24) can be evaluated.

5. MECHANISM FOR TIGHT CLEARANCE ASSEMBLY

The three phases as employed in the loose clearance case can still be used here.

The approaching and initial insertion phases are identically in both cases. The

22



insertion phase, however, needs to be modified. In this section, we first discuss

why the insertion needs to be modified, and then the modification procedure is
identified.

A. The Effect of the Resistance Force

The resistance force is aligned with the end tangent vector of the beam (Fig. 4),

and generates deflecting moment on the beam. When the resistance force or the

* beam deformation is very small, the deflecting moment is negligible. When the

clearance becomes tight, or the deflection of the beam is large, the effect of the

resistance force cannot be ignored.

If the same trajectory as in the loose clearance case is still employed, the
* moment generated by the resistance force must be compensated by additional force

and moment exerted by the hole in order to maintain a free beam status (Fig. 4).

The latter force and momen not only violate the third condition of assembly as

previously discussed, bu; also make the friction force even larger. As a result, the

• assembly becomes more difficult to success.

From Fig. 4, it can be seen that the moment generated by the resistance force
actually counteract the moment generated by the weight of the beam. The deflection

of the beam should become smaller with the resistance force if no additional force

and moment are to be exerted by the hole. Consequently, one should reduce the

deflection in order to successfully complete the assembly.

B. Tool Trajectory for Tight Clearance Assembly

* Essentially, the tool should move to a new position and orientation which leads

the beam to a smaller deflection. It appears that the simplest method is to fully

extend the beam such that the beam has no deflection (Fig. 5). However, there are

two problems with this strategy.

* First, when the beam has no distortion, the resistance force has no deflecting

effect on the beam. But the deflecting effect by the weight of the beam is still there

which is actually counterbalanced by the additional force and moment exerted by the
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hole. The latter force and moment again violate the third condition of assembly.

The second problem is that the distance that the tool travels in making the insertion

is increased. Recall that in the loose clearance case, the insertion follows the shape

of the beam curve. The distance that the tool travels is the same as the length of the

beam L. To make the beam fully extended, the tool has to move from the original

position as specified by (18) or (19) along a special curve AB to point (L, 0) before

the insertion starts (Fig. 5). The total distance travelled becomes L + La where La is
the length of curve AB. This prolonged length makes the assembly less energy-

efficient. In order to have an efficient assembly, the tool should make as small an

adjustment as possible, and at the same time the total deformation is reduced

enough to offset the effect of the resistance force. Basically, the beam curve should
have a shape between fully extended and fully deflected as shown in Fig. 5.

Finding the right curve for AB turns out to be a difficult issue. If the curve is

not adequately selected, the assembly may fail again. For example, the tool could

be moved too much away from the hole, and the free-end of the beam loses its

contact with the hole (Fig. 6a). On the other hand, the tool could be too close to

the hole, the deflection becomes worse (Fig. 6b). One method to find the right

trajectory of the tool is to solve the fundamental deflection equation with the

resistance force added, i.e., turning (2) into the following equation:

O(25
El ds2 = -cos cos 0 + F sin (00 - 0). (25)

where F denotes the resistance force. Theoretically, one may find x, y and 0 at

s=L by solving (25). The computation involved, however, is substantial. The

unknown resistance force F makes the situation even worse.

A simple solution is proposed for this problem. First, the deflecting effect of

0 the resistance force is very small to the portion which is close to the end of the beam

since the force is tangential to the end. One may simply consider that the curvature

of that portion is not affected by the resistance force. Second, the effect to the

portion which is close to the tool-end, is very significant, and its curvature is
* 24
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greatly reduced by the resistance force. A simple consideration is that the curvature
becomes zero, and as the resistance force increases, the length of the zero-curvature

portion becomes longer. In the maximum case, the beam should be fully extended
to totally eliminate the effect of the resistance force. Based on this intuitive

analysis, we propose the following curve as AB.

Claim 2 If the tool moves along the involute of the beam curve, which appears

when the beam first contacts the hole (at the end of the approaching phase), and the

orientation of the tool is perpendicular to the tangent of the involute, the tool and the

hole can spend a curve with the total length being the original length of the beam,

and the orientation difference between the hole and the tool becomes smaller. In

addition, the curve is very close to the beam curve which' Acier the influence of

the resistance force and its own weight.

Proof: Without losing generality, we can assume the curve which describes the
shape of the free beam to be a unit speed curve (a curve uqt): t -- R2 is a unit speed

curve if Ida(t)/dtl = 1 [131) and denoted as a(s). The involute of a(s) can be

described as ([13]):

13(s) = a(s) + (L-s) T(s) (26)

where T(s) = a'(s). If the tool is at point fi(t 0 ) of the involute, one curve that

could be spanned by the tool and the hole is the portion of curve ot(s) from 0 to to

plus the straight line between ax(to) and B(tO). The total length of this curve is:

* to

Total Length = d do(s)+ (L-tO)

to
=Jdt + L - to

=to+ L- to = L (27)
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which is the same as the length of the beam (Fig. 7). The orientation of the tool at

point B(to) is orthogonal to the tangent of B(s) at to, which is T(to) since the tangent
of B(s) is B'(s), and

[T(s)]T 1B'(s) = [T(s)]T [a'(s) + (L-s) T'(s) - T(s)]
= [T(s)]T[T(s) + (L-s) T'(s) - T(s)]

= [T(s)]T T'(s)(L-s)

=0. (28)

T(to), however, represents the tangent vector of curve a(to) at point to. As a result,

the orientation difference between the hole and the tool becomes smaller.
Next we need to prove that the curve just described is very close to the beam

curve under the influence of the resistance force. In [14] it is described that the
involute can be formed by manipulating a string using the following steps. First,

take a string of length L, fasten one end at the end of the beam for which s=O and
bring the string into coincidence with the beam curve. Then the string is unwound
from the curve and is kept stretched. The other end point describes the involute.
The portion of the string which is unwound from the curve has zero curvature and

its shape is close to the portion of the beam that is close to the tool-end as described
earlier, the portion which is still wound along the curve remains the same curvature.
From the earlier discussion, it is known that the latter portion almost has the same

shape as the portion of the beam which is close to the free-end. #

Now we are in the position to describe the insertion phase of the tight tolerance

assembly. First, start the insertion phase as in the loose clearance case. If the tool
feels a large resistance and the beam cannot be inserted into the hole, the tool should
go back to its original point. The tool is then moved by a small distance along the

curve B(to). The insertion is then tried again. If the resistance can be overcome,
the insertion continuous. Otherwise, another adjustment is needed. The adjustment

continues until the insertion become possible. During the insertion process, the
tool should follow the beam curve for the same reason as discussed in the previous
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section. Since the beam shape is very close to the curve of the string as just

described, the trajectory of the tool is a straight line motion followed by a curved

motion. The straight line motion is defined by a(to)-B(to) and the curved motion

should follow the free beam curve after the tool touches the point c.(to).

To feel the resistance force, one may install a force sensor at the end-effector.

Alternatively, one may use a vision sensor to observe the shape of the beam curve.

If a curve similar to the one as shown in Fig. 6b appears, the insertion encounters a

large resistance and the adjustment becomes necessary. Otherwise, the tool can

0 continue its motion following the beam curve.

6. EXPERIMENTAL RESULTS

To verify the assembly mechanisms as proposed in the previous sections,

experiments were conducted in the Advanced Manufacturing Laboratory of the Ohio

State University. The end-effector of a PUMA robot held a aluminum beam and

0 inserted it into a hole. The beam was 0.44 m long, 0.024 m wide and 0.0005 m

thick. The hole had the same size as the beam, but its thickness was adjustable

such that the clearance between the hole and the size could be altered.

In order to conduct the experiment, we must first be able to describe the

deflection of the beam. To do so, the term contained in (6), (7) and (8) need to

be identified. A vision system was used for this purpose. The details of the vision

method are reported in [111] and will not be further discussed in this paper. Here

only a brief description is provided.

Taking the first five terms of equation (6), the relationship between 0 and O0 at

s = L can be obtained as follows:

=00 + (0) cos 00 L3 - (-)2 sin0o cos00 L6

E 1
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0

+ o__ ) 1 C) 3+ I )3 (Cos )3 L9 - 12960 (sin 0)2 cos0OL 9 . (29)

From (29), it can be seen that when 90 is small (it is true for most flexible

beams), five terms are enough to give a very close approximation. Otherwise more

terms need to be included. Let the end-effector of the PUMA pick up the beam and
hold it at a horizontal direction such that 0 = 0 degree. Using vision system, one

* can identify the deflection angle 00 at the free-end ([11]). With 0, 00 and L
COknown, one can use (29) to calculate the term k. Once the latter term is calculated,

one can determine the required position and orientation of the tool in the

* approaching phase as well as the shape of the beam curve using (6), (7) and (8)

(taking the first five terms, for example), or (9), (10) and (11).

The vision system can also be used to identify the shape of the beam curve by
identifying a number of discrete points on the beam once the the free-end contacts

• the hole. The motion of the tool can then be approximated by piece-wise linear

motions between the discrete points. In this way, lengthy computation for

identifying the beam curve is not required.

The setup of the experiment is shown in Fig. 8. The part which has the hole is

• held static (the right side of the figure). The hole axis is thirty degrees from the
horizontal direction, i.e., 00 = 300. Based on the hole orientation, the tool position

and orientation are calculated to be x=0.435m, y = 0.002m and 0= 0 degree. The

shape of the beam curve in our experiment is identified by the vision system. Two

• assembly tasks were executed, one for the loose clearance and the other for the tight

clearance. Fig. 9 shows the sequence of the loose clearance case, where a is the
initial insertion phase, b is the insertion phase, and c is the end of the insertion

phase (note that Fig. 8 also shows the approaching phase). In the insertion phase,

* the tool followed the beam curve that was identified by the vision system, and a

successful assembly was achieved.
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In the tight clearance experiment, we first let the tool follow the beam curve
without any adjustment, and found that the beam could not go into the hole. As the
tool moved towards the hole, the beam was badly deflected (Fig. lOa). Note that
the vision system was also used to identify the abnormal deflection as mentioned
earlier. By using the adjustment mechanism as discussed in the previous section,
the tool came back to the original point, and was then adjusted following the
involute by fifteen degrees. After that, the tool follow the new beam curve and the
assembly was successfully completed (Fig. 10b).

7. CONCLUSIONS

Mechanisms for assembly of deformable parts have been presented in this
paper. A flexible beam being inserted into a rigid hole was chosen as the target of
study. The deflection behavior of the beam was first studied. Then conditions of
successful assembly for rigid parts were reviewed. It was argued that conditions
for rigid parts were applicable to deformable beams since the surface of the beam
that contacted with the hole was still rigid. Based on the assembly conditions, tool
trajectories were identified as the k-y issue for a successful assembly. Assembly
mechanisms were proposed for both the loose and tight clearance cases. In the
loose clearance case, the tool trajectory should follow the free beam curve to

complete the insertion. In the tight clearance case, the trajectory should be adjusted
according to the tightness of the clearance, and the adjustment should follow the
involute of the free beam curve. Experiments were conducted for both loose and
tight clearance cases. Successful results proved that the mechanism proposed in
this paper are valid for mating flexible beams with rigid holes.
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Fig. 1 A deflected beam is to be inserted into a hole
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a. Geometric relations in peg insertion

0F

b. Reaction forces between the peg and the hole

Fig. 2 Geometry (a) and forces (b) in peg insertion
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I Fully extended

Fully deflected

Fig. 5 The beam curves between fully extended and
fully deflected
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a.

b.

Fig. 6 a. Tool is too far away from the hole, beam loses contact.
b. Tool is too close to the hole, beam is badly deflected.
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Fully extended beam curve

A involute B(s)

* 1(t 0) Adjusted beam curve

~NFully deflected beam curve a(s)

Fig. 7 The relation between the beam curve and its involute
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a. The initial insertion phase

Fig. 9 The sequence of the loose-clearance assembly (Cont'd)

40



0

0

b. The insertion phase

Fig. 9 The sequence of the loose-clearance assembly (cont'd)
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II

c. The end of the insertion phase

Fig. 9 The sequence of the loose-clearamce assembly
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a. Without adjustment, the beam starts buckling

0!

b. With adjustment, the beam is being inserted into the hole

Fig. 10 The experiment of the tight-clearance assembly
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DEFORMATION IDENTIFICATION AND
ESTIMATION OF ONE-DIMENSIONAL OBJECTS

BY VISION SENSORS'

Chichyang Chen and Yuan F. Zheng
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Abstract

Using vision sensors to study object deformation is introduced in this paper. The

vision sensor is used to identify the deformation characteristic and estimate the

deformation behavior of flexible beams. First, a nonlinear equation describing

the deformation of the beam is given. Then, cubic spline functions are used to

approximate the contour of the deformed beam after the beam is detected by the

vision sensor. From the cubic spline approximation and using Maclaurin's series

expansion, a procedure to determine the deformation characteristic is formulated.

To estimate the deformation behavior, numerical differential method to solve the

nonlinear equation is used. The error of this numerical method can be controlled

with the aid of the vision sensor. Finally, experimental results are given to verify

that the proposed methods are effective.

1Acknowledgment: This work is supported by the Office of Naval Research under grant N0014-90-
J-1516
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I. Introduction

In the areas of manufacturing automation and robotics, vision sensors have been

widely used to recognize, locate, and describe objects in unstructured environment.

In most cases, the objects are assumed to be rigid, which means that the objects

will not change their size and shape during the process of assembling. In reality,

deformable objects are often encountered in many situations. For example, in

shipbuilding, aerospace and automobile industries, flexible plates are often used for

assembling various vehicles. Even rigid objects become deformable when their size

is large. When the objects are deformable, their size and shape will change during

the process of assembling. As a result, it becomes difficult to locate the position

and orientation of the objects. In fact, the deformable objects have already become

a part of the unstructured environment.

In this paper, a new application of vision sensors is introduced. The vision sensor

is used to identify the deformation characteristic of deformable objects. After the

deformation characteristic is found, the deformation behavior of the objects can

be estimated and the automatic handling and assembling of the objects can be

accomplished. As an illustration of the new application of vision sensors, we first

chose one-dimensional objects as our research target and will extend our study to

two- and three-dimensional cases in the future. Without loss of generality, we also

assume that the objects have only elastic deformation. However, we do not limit

the size and the amount of the deformation of the objects.

For a one-dimensional deformable object, that is, a flexible beam, the

deformation can be described by the following equation,

El = EI d O = M(), (1)
p ds

where p is the radius of curvature, E is the stiffness of the material, I is the moment
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of inertia of the cross-sectional area, s is the length of the beam, 9 is the angle from

the x-axis to the tangential vector at point s, and M(s) is the deflecting moment

exerting at point s of the beam. For convenience, 9 is referred to as the deflection

angle hereafter. Because M(s) also depends on 9, equation (1) is difficult to solve.

If we take the derivative on each side of equation (1), and assume the origin being

at the free-end of the beam [1][2), equation (1) becomes

d20 wd = - - s cos 9, (2)

where w is the weight density of the beam. From equation (2), the deformation

of the beam is completely determined by the term '/ and the length of the beam.

For simplicity, the length of the beam is assumed to be known. The only unknown

remained to be found is '/. Since ' determines the deformation of the beam, it is

referred to as the deformation characteristic of the beam.

Equation (2) is nonlinear and has no closed-form solution for 9. Although many

numerical methods can provide approximate solution for 9, we must choose ones

that are explicitly expressed in terms of s and - so that the observed 9's from

the detection of the vision sensor can be utilized to determine '7. The numerical

method we chose to determine -7 is Maclaurin's series expansion, since it expresses

9 explicitly in terms of s and -
'

Although the method using Maclaurin's series expansion to solve equation (2) is

efficient in identifying the ' , its error in approximating 9 is not controllable when

the length of the beam or ' becomes large. So, in estimating the deformation

behavior of the beam, another method which is more robust in controlling the

error is introduced. This method, named as numerical differentiation method,

approximates the second derivative in equation (2) by Lagrangian interpolation

formula. The numerical differentiation method and the Maclaurin's series expansion

are discussed in detail in the sequel.
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For the purpose of identifying the deformation characteristic and manipulating

the deformed beam, the contour of the deformed beam needs to be described

by mathematical equations. Since equation (2) has no closed-form solution, it is

impossible to find an exact equation to describe the contour of the deflected beam in

terms of s. Approximation has to be made in expressing the curve of the beam after

the vision sensor detects the edge points of the beam. The cubic spline functions are

very suitable for approximating the contour of the deflected beam. They have two

* important properties. One is that their first and second derivatives are continuous

and the other is that they approximately represent a physical spline with minimum

internal strain energy which resembles the nature of a deformed beam [3].

Speed is an important issue when vision sensors are used in automation. Usually,

vision processing is time-consuming because complicate vision algorithms have to

work on a large amount of data. Fortunately, because the deflected beam can be

approximated by cubic spline functions, only certain discrete edge points of the
0 beam need to be detected by the vision sensor. To further increase the speed of

the detection of the edge points of the beam, the illumination of the workplace is

designed to make the brightness of the edge points on the beam much higher than

* the background. So, only simple one-dimensional edge detection algorithm has to

be performed to detect the edge points of the beam.

To verify that the proposed methods in identifying and estimating the

* deformation of the beam is effective, an experiment was conducted. An aluminum

beam held by the robot's gripper was tested. The experimental results show us that

the methods are effective.

As an illustration of the new application of vision sensors, another experiment

was also made. The vision sensor was used in guiding the robot's gripper in the

process of inserting the flexible aluminum beam into a rigid straight hole. In order

to insert the beam into the hole smoothly, the orientation of the contact point of
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the beam with the inlet of the hole must be kept the same as that of the hole. The

proposed methods in determining and estimating the deformation of a beam have

successfully guided the gripper in the insertion process.

The organization of this paper is as follows. In Section II, vision detection of the

* beam is discussed. Section III gives the cubic spline approximation of the deflected

contour of the beam. Section IV presents the identification of the deformation

characteristic of the beam using the Maclaurin's series expansion, while Section V

covers the estimation of the deformation behavior of the beam using the numerical

differentiation method. The experimental results that verify the numerical methods

are given in Section VI. The vision guided insertion of the aluminum beam into a

rigid hole is described in Section VII. Section VIII concludes the paper.

II. Vision Detection of Deformed beam

Speed and accuracy are the two main considerations in choosing the method for

beam detection. The most straightforward method is to detect all the edge points

of the beam. This method has two drawbacks. One obvious drawback is that it

is very time-consuming. The second is that, although it is accurate in determining

the position of every edge point of the beam, the deflection angle 0 at each point of

the beam is difficult to be accurately determined since the edge points are discrete.

Instead of detecting all the edge points of the beam, the nature of the deformed

beam should be examined to find out the most efficient and accurate method

to detect and represent the beam. Since the first and second derivatives of the

contour of the beam and the cubic spline functions are both continuous and the

spline function has the property that its representation has the minimum strain

energy, cubic spline functions are very suitable for approximating the contour of
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Figure 1: Image of deformed beams.

the deformed beam.

To apply the spline function to representing the contour of the deformed beam,

* certain edge points of the beam have to be detected. These points should include

the end points of the beam and should be evenly distributed along the beam in order

to have an accurate approximation for the curve of the beam. Since the amount

of deformation of the beam is not known beforehand, we must first find out the

position of the free end of the beam. After it is found and the fixed end of the beam

is already known (which is the position of the gripper if the beam is manipulated

by the gripper), the position of the other edge points between these two points can

easily be detected by applying one-dimensional edge detection along the beam.

In this section, we first discuss how an edge point of the beam is detected and

then describe how the free end can be found. In the discussions above and following,

* the geometric camera calibration is assumed to be done. The position of a point in

space can be referred to a pixel in the image plane and vice versa.

A. Edge Point Detection

As shown in Fig. 1, the image of the deformed beam is a curved rectangular

which is two-dimensional. The desired contour that can best represent the
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deformation of the beam is the center line of the rectangular. This center line

0 will be referred to as the "beam curve" and the points of the beam curve that are

used in spline approximation is referred to as the "knots" of the beam hereafter.

The illumination of the workplace is so designed that the brightness of the beam

* is much higher than that of the background. Consequently, the edge points of the

beam can be detected by using only one-dimensional difference and thresholding

operations. The position of the knots is then at the middle of the upper and lower

edge points of the beam.

B. Binary Search for the Free End

In searching for the free end of the beam, we assume that the length of the
beam is already known and the background of the workplace is set up to be dark

and uniform. The method for searching the free end can thus be described as

follows.

Beginning from the midway of the beam, one-dimensional edge detection is

applied. If an upper edge point and a lower edge point are found, then move

forward one quarter length of the beam; otherwise, move backward one quarter

length of the beam. Repeat this searching process with each movement being half

the distance of its previous step until the distance of the movement is less than

one pixel length. The edge point detected from the last edge detection is thus the

farthest corner of the curved rectangular as shown in Fig. 1(a) and 1(b). The other

corner of the rectangular can easily be detected. The free end is then the midpoint

of these two corner points.
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III. Spline Approximation of the Beam Curve

Once the location of the free end and the other knots of the beam curve have

been detected, each segment of the curve that is bounded by the knots can be

approximated by a cubic polynomial. If there are n + 1 knots, n cubic polynomials

are required. As shown in Fig. 2, we assume that the beam curve is in the x-y

plane, and the i-th segment of the beam curve is represented by

y,(x) = a 3 + ai2 2 + a x + ao. (3)

Each cubic polynomial has four unknown coefficients. Thus, totally 4n unknowns

have to be determined in order to approximate the whole beam curve.

These 4n unknowns can be solved by 4n conditions. The position of the n + 1

knots and the continuity property of the spline functions gives 4n - 2 conditions

explicitly, which are outlined as follows.

1. The position of n + 1 knots gives n + 1 conditions.

2. Continuity of y, at the knots gives n - 1 conditions.

3. Continuity of the first derivative of y, at the knots gives n - 1 conditions.
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4. Continuity of the second derivative of y, at the knots gives n - 1 conditions.

Two more conditions can be found from the boundary condie,- 'is at the two end

points of the beam curve.

At the fixed end of the beam, the first derivative of yj is equal to the tangent of

the angle of the gripper which is already known. That is, yl(O) = tan(99 p), where

Og, is the angle of the gripper.

The other boundary condition is at the free end of the beam. Because the

moment exerted on the free end is zero, we can see from the following equation

1
M(x) = El- = El dx2  (4)

p [i + (a),]3

* that the second derivative of y, at the free end is zero. That is. y"(x,) = 0, where

x, is the x-coordinate of the free end.

* IV. Identification of the Deformation Characteristic

The difficulty in identifying the deformation characteristic, W , of the beam

* results from the nonlinearity of equation (2) which has no closed form solution for

0. Explicit expression of 0 in terms of s and f- must be given so that .Iy can

be derived by using the cubic spline representation of the detected beam curve.

In the following, the Maclaurin's series approximation for 0 is given first. Then a

sufficient condition for the series to converge and the error of the approximation

are analyzed. And a procedure to determine the deformation characteristic ', by

taking the convergence condition of the series into consideration, is described.

The Maclaurin's series expansion of O(s) is

O(S) = 0(0) ± + 1 ,, ....2 +1 (n-i(o)S - + R,(s), (5)

(n 1)!
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where

Rn(s) =- 0 )

is the remainder of the expansion and E [0, s]. From equation (2) and the boundary

conditions 0(0) 0o, 0'(0) = 0, and 0"(0) = 0, we have

0(P)(0) = - cos(0o)El

0(4)(0) = 0(5)(0) - 0

0(6)(0) = -4( i) 2 sin(0o) cos(0o) (6)

0(7)(0) = 0(8 )(0) = 0

0(9)(0) = 42( - )3 cos3 (00) - 28(. y)3 sin 2 (0o) cos(9O).

Thus,

O(s) = 0- cos(0o)(.jy)s 3 - - sin(0o)( I7)2 cos(9o)S 6 + I cos3 (0o)( )3s 9

1 sin 2(00 ) cos(O)(-7)3s9 + T( 0)(0 )s' 0 +. .... +

Since there is no exact explicit expression for O(s), neither for 0(")(s), the necessary

condition for the series (5) to converge is unknown. However, from equation (7),

each term (except Oo) contains a factor of '7s 3 . So, a sufficient condition for (5)

to converge can be obtained. If the value of s can satisfy - s 3 < 1, then (5) can

converge. In addition, the maximum error in approximating 0 can be determined.

For example, if we take n = 9 in (7), then

1 3_ w 1 w
-(s) ) 0- ( -- )cos( 0 o)s -- 1-(-) sin(9o) cos(0o)s 6 , (8)

6 El 180OEl

and the error in approximating O(s) is

R9 = 1- coss 3 (0( )) - sin2(0( )) cos(O( ))( )3s9
8640 12960 El

which is less than = 1.16 x 10'.
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If the length of the beam is 1, then we can categorize the beam as either large

deflection beam if _713 > 1 or small deflection beam if 13 < 1. To decide the

beam as either small or large deflection beam, the deflection angle, 01 at s = I is

compared to an angle
0 1 1 1 1
0 -0 - - cos(G0 ) - - sin(9o) cos( 0 ) + - cos(0°) 1 sin 2(9 0) cOs(00).

6 180 8640 12960

If 1 > 0,a, the beam is a small deflection beam. Otherwise, it is a laige deflection

beam.

The procedure for determining the deformation characteristic 'T can then be

stated as follows.

• 1. If the beam is a small deflection beam, that is, 01 > 0., then 'T can be derived

very accurately from the following equation

01 = 00- I cos(0o)( 'l)1 3- ' sin(Oo) cos(9o)( -) 216+ (9)

* " 0 cos 3 (0o)( (') 3 P - l sin 2(0o) CoS(90)(-X)319 ,

where 01 is exactly the gripper's angle and 0 is the deflection angle at the free

end which can be derived from the spline approximation of the beam curve,

0 = tan-1 (3an3 x2 + 2an2xn + anl),

with Xn the x-coordinate of the free end of the beam.

2. If 01 < 0a, then t -13 > 1, which means that equation (5) might not converge.

Since we already have the spline description of the beam curve, we can find

out a point A(xa, y,) of the beam curve whose deflection angle is equal to 0,.

3. Calculate the length a from the free end to the point A by the following

approximation
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Am

a Aix ,sec(0i),
t-1

where 9, = tan-'(3ax3 + 2a2 xi + a,) is the deflection angle at the discrete

point x, LXX= (x,, - xa)/m, and m can be chosen as large as possible.

0
4. Finally, = a - 3 since at point A, 9 (a) = 0,.

V. Deformation Behavior Estimation

For the purpose of automatic manipulation of the deformable objects, the

deformation behavior of the objects must be estimated before manipulation. For
40

the case of one-dimensional objects, this means that the position and orientation of

the gripper needed to reach the desired pose of the object should be estimated. In

particular, given the desired position and orientation of the free end of the beam,

• the required position and orientation of the manipulator is of more interest to us if

the fixed end of the beam is held by the manipulator. Instrumental in answering

this question is the choice of the numerical method to solve equation (2) and how

• the error is controlled. In the following, the choice of the numerical method is

discussed first. The control of the numerical error with the aid of the vision sensor

is described next.

A. Choice of numerical method

Under the condition ,713 < 1, the Maclaurin's series expansion is a very effective

method to solve equation (2). The series approximating O(s) converges and the error

is under control. Given the desired deflection angle 00 of the free end of the beam,

the angle 01 of the gripper should be
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01 = 80- 1 cos(Oo)(-!L) 3 - -I sin(9o) cos(8o)( ' )'l' + 4 cos 3(0)( )3 P-6 El 180 l 860 El(10)
1 sin 2(6o) COS(0o)( , ) 3 9

(
12960 E

and the maximum error of 01 is much less than 1.16 x 10- if the n in equation (5) is

chosen to be twelve. However, when '1 3 > 1, not only the error in approximating

0(s) could become very large if the n is fixed, but also the convergence of the series

is not assured. Since the factor ' is not known beforehand, the Maclaarin's series

method is not robust in estimating the deformation behavior of the b2dam.

Once the deformation characteristic 'I of the beam has been identified,

numerous methods can be used to solve equation (2). In the following, a method

that is derived from [4] and can be applied to all values of -!' l3 is described.El

* Firstly, the length I of the beam curve is divided equally into n small segments,

each with length h. Then, replacing the second derivative in the left side of

equation (2) with the divided difference approximation derived from the Lagrangian

interpolation formula, equation (2) becomes

2( -W

+- 2 + O, = h T(-)st+i cos(0,+ 1 ), (11)

where 0i denotes 0(si) and si = ih for i = 0,1,2, ..... ,n, and the local truncation

error is

h 0(4)( ), with E [si, ,+2]. (12)

12

Equation (11) is an explicit method to compte 9(s,). However, to start the

computation, we need 00 and 01. 0 is already known. 01 can be obtained from the

Lagrangian quadratic interpolation of 9'(so) which is

*'(so) = (2h)-'(-0 2 + 40, - 30o), (13)

and the truncation error of the interpolation is
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2h h')(V,, 7E [So, S2]. (14)
* 3!

Since 0'(so) = 0'(0) = 0 and 9(so) = 90, it turns out that

8 =1 02 + 380. (15)
4 4

With i = 0 and substituting 81 with equation (15), equation (11) becomes

02 = 8o - )Cs( 1 02 + 30o). (16)
El 4 4

* 02 can be derived from equation (16) by iterative method. After 02 is known,

01 can also be obtained. Computation of equation (11) can proceed and 0,, for

i = 3,4, ...., n, can be computed.

After Oi's are obtained, the coordinate (xi, y,) of each discrete point of the beam

can be calculated by

i i

x,= E hcos(9j), and y, = h sin(,).
j=O j=O

B. Vision Aided Error Control

Three kinds of error occur in the computation of 9,'s in equation (11). The

first is the truncation error which i-ults from the Lagrangian interpolation of the

derivatives. As shown in equations (12) and (14), this error is proportional to the

power of h. The second kind of error is from the round-off error occurs at some

decimal place. On the contrary, the round-off error is inversely proportional to

the power of h, which is shown in this section. The last kind of error is from the

inaccuracy of -4 which in turn results from the error of the vision sensor and the

spline approximation of the beam curve. Prom equation (11), the error caused by

the inaccuracy of -1 will be accumulated as the computation of 0j's proceeds and is

a nonlinear function of '7 and h. The choice of n thus affect heavily the accuracy

of the numerical method since h = I/n.
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Because the error caused by the inaccuracy of ' is a nonlinear function of n

0v (or h), there is no explicit method to determine the optimal n which will cause

minimum error in the computation of 0i's. However, adequate value of n which will

make the error be within some range can be determined empirically with the aid of

* the vision sensor. This value of n can be derived in two steps. First, we determine

a value of n, denoted by n' that will cause minimum error from local truncation and

round-off by assuming that the value of '7 is accurate. Since the truncation error

is proportional to the power of h and the round-off error is inversely proportional

to the power of h, n' can be determined from equalizing the maximum truncation

error and the maximum round-off error. Secondly, compute 01 from (11) using n'

and with 60 observed from the vision sensor. Then compare the computed 01 with

gripper's angle 0gp. If the difference between these two values is smaller than the

error of the vision sensor, the value of n' is the one required. Otherwise, adjust the

value of n' until the difference is smaller than the error of the vision sensor. In the

following, derivation of the value of n' in the first step is described.

The truncation error in the Lagrangian interpolation for 9'(so) is, from equation

(14),

* 2h 2

i-j 0" (7),77E [SO, S2].

Since 10(3)(7)1- : , the maximum truncation error in this case is 2 h 2 ' According

to [5J, the round-off error at point s,, for m = 0, 1,2 in the quadratic Lagrangian

interpolation for 0'(so) is

2 d 2 (r-i 
(17)

=0d~ (,j - i)RI(m) = h-1 E -" E -u' -- ) 16 (17)
j=O dmiOi6 .7

where E is the round-off value at some decimal place. For example, in PUMA's

VAL-II programming language, E is equal to 5 x 106. The value of h that equalizes

the maximum truncation error and the maximum round-off error can be derived
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from the following equation,

Rl 2h 2 w
R3(1) = 3E

Because Rj(1) = h-1 f, the value of h is

(F ),(18)

where the value - is obtained from vision's identification. So,

Sn=1(-1)1/3

(3c)1/3

Another value of h can also be derived from the truncation and round-off errors

of the Lagrangian interpolation for 0"(s) with the same argument as discussed

0 above. However, the value of h thus derived is several order less than that in (18).

We conclude that the choice of h is from (18) and the dominant truncation and

round-off errors are from (12) and (14).

VI. Experimental Results

* An experiment was conducted to verify that the proposed methods for the vision

identification and estimation of deformation of the beam is effective. An aluminum

beam with length = 443mm, width = 24mm and thickness = 0.5mm was tested.

The beam was held by the gripper of a PUMA 560's arm. The vision sensor is

Unimation's UniVision system which can allow the VAL-Il controller access the

grey level of an array of pixels of the image frame. The program in this experiment

was written in VAL-II programming language.

Two kinds of tests were conducted on the beam. One is the identification of

the deformation characteristic of the beam using the method described in Section

IV. The orientation of the gripper holding the beam in this test is horizontal.
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After the deformation characteristic of the beam is identified, the test of the

numerical methods for estimating the deformation behavior was made. The

numerical methods include both the Maclaurin's series expansion and the numerical

differentiation method. Several cases of the desired angles of the free end were tested

which includes 200, 30' , 400, and 500. The results for these tests are outlined below.

The notations in the following tables follow those in Section IV and V.

The results of the test for the identification of the deformation characteristic E"

are

60 go a

00 27.360 312mm 35.65m -3  32.89m -3  2.856

where ( is derived from equation (9) and (#)2 is derived from step (4) in the

procedure discussed in Section IV.

The results of the test for the deformation estimation using Maclaurin's series

method (equation (10) with y 32.89) are

Desired 0 Calculated 61 Observed 80
200 -6.380 22.070

300 5.300 31.000

400 17.840 41.500
500 31.170 49.520

The results of the test for the deformation estimation using the numerical dif-

ferentiation method described in Section V with #t = 32.89 and n = 230 are
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Desired 00 Calculated 01 Observed 00
200 -7.920 20.070
300 3.160 30.410
400 17.240 39.540
500 30.900 49.87

The results of the numerical differentiation method are better than those of the

Maclaurin's series method, especially in the cases of smaller desired O0. The reason

is when 0 is small, the degree of deformation of the beam is more severe.

VII. Vision Guided Automatic Assembly of Deformable Beam

Another experiment was also conducted to illustrate the usage of the proposed

methods for the identification and estimation of the deformation of objects. The

goal of the experiment is to insert the flexible aluminum beam into a rigid straight

hole. Since the beam is flexible, strategies for the insertion of the beam into the hole

is different from inserting a rigid beam. Detailed description about the strategies

for the insertion of the flexible beam into the hole can be found in another paper

[6].

The functions of the vision sensor in the process of insertion of the beam have

three folds. The first is to identify the deformation characteristic of the beam and

estimate the required angle of the manipulator so that the orientation of the free

end of the beam is aligned with the hole before the insertion proceeds. The second

function of the vision sensor is to determine the spline approximation of the beam

curve after the free end of the beam has contacted the hole with their orientations

aligned. It is claimed in [6] that the optimal trajectory of the manipulator for the

insertion is the beam curve. The third function of the vision sensor is to detect

any buckling of the beam during the process of the insertion. The buckling of the
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beam is caused by the large fiction between the beam and the inside surface of the

hole. The solution to the buckling is to adjust the court of the gripper following

the involute of the free beam curve[6].

Two cases of insertion were tested. One is the insertion with loose clearance and

the other is tight clearance of the hole. Following the procedure of the experiment

described in the last section, the first function of the vision sensor was successfully

performed and the beam was closely aligned with the hole. For the case of loose

clearance, no buckling of the beam happened, and the trajectory of the gripper was a

piece-wise approximation of the cubic spline function detected by the vision sensor.

The insertion of the beam was successfully completed. For the tight clearance case,

the vision sensor was used to detect the buckling of the beam once in a while during

the insertion process. If the buckling was detected, the manipulator adjusted its

court of motion according to the strategy described in [6] and the insertion was also

completed smoothly.

VIII. Conclusions

0
Vision sensors have been successfully used in resolving the uncertainty caused by

the deformation of the objects. Several numerical methods have been proposed and

analyzed for identifying the deformation characteristic, describing the amount of

* deformation, and estimating the deformation behavior of one-dimensional objects.

These numerical methods have been verified to be effective by experiments.

Although the target of our research in this paper is only one-dimensional objects.

* we can conclude from this work the procedure for ident --ing and estimating the

deformation of deformable objects as follows.

1. Find out the mathematical equations that describe the deformation of the

0
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objects and determine the deformation characteristics of the objects which

are unknown.

2. From the observation of the vision sensor, formulate the approximate

mathematical description of the shape of the objects after deformation.

By using explicit numerical methods, the deformation characteristics of the

objects can be approximately computed.

3. Once the deformation characteristics of the objects have been computed, the

numerical methods for estimating the deformation behavior of the objects

should be chosen to be robust and efficient in controlling the error. Empirical

methods with the aid of the vision sensor can be used to increase the accuracy

of the estimation.

0
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